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Abstract. We present here a technique for the study of the electronic structure of ternary
random alloys. The technique is based on the augmented space recursion introduced earlier by
us for binary alloys. The method discussed here is a non-trivial extension of the earlier technique
for binary alloys.

1. Introduction

Commercial alloys are multiphase systems. In addition to having knowledge about the
electronic structure of pure elements and ordered intermetallics one should also possess an
understanding of the electronic structure of disordered phases. The majority of electronic
structure calculations for disordered alloys deal with binary substitutional alloys, whereas
most alloys of practical interest are multi-component (e.g. ternary, quaternary etc), from
semiconductor alloys used in devices to brasses and stainless steels. Binary alloy systems
provide a first step in the understanding of higher-order alloy systems. The electronic
structure calculations of higher-order alloy systems proves the real predictive power of
theory and leads to alloy designing. Furthermore, systems like binary magnetic alloys with
random moments or vacancies in binary systems can be thought of as special cases of more
general higher-order alloy systems.

Calculations on disordered alloys demand, in conjunction with accurate electronic
structure description, a reasonable scheme of describing the configuration averaging. To
date the most successful of these schemes is the coherent potential approximation (CPA).
Ternary generalizations of the CPA based on the tight-binding linearized muffin-tin orbital
method (TB-LMTO) have been carried out [1–4]. Despite its success, the CPA, being a
single-site approximation, has its own limitations. In particular, for split band alloys, CPA
does not work well in the impurity bands. This was noted, for example, by Hüfner et al in
the Ni minority bands of Cu-rich NiCu and Pd minority bands of Ag-rich PdAg alloys [5]. It
does not include correlated scatterings from neighbouring sites, nor can it take into account
short-ranged order [10] or off-diagonal disorder arising out of local lattice distortions [11].
The augmented space formalism [6] for configuration averaging provides a systematic way
of taking these effects into account. Recently [7] we have coupled this formalism with the
recursion method of Haydocket al [8] within the framework of the tight-binding linearized
muffin-tin orbital basis (TB-LMTO) [9] for study of the electronic structure of disordered

† Present address: Office National d’Etudes et de Recherches Aerospatials, Laboratoire de Physique des Solids,
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binary alloy systems. This method coupled with the orbital peeling method has been shown
[12] to provide a reasonable and computationally viable technique for alloy phase stability
studies. A generalization of this method to ternary systems will be an interesting and useful
extension.

In section 2 we present briefly what augmented space recursion is. In section 3 we apply
the method of augmented space recursion for ternary alloy systems within the framework
of TB-LMTO formalism. Section 4 is devoted to computational details. In section 5 we
present results for some Cu–Ni–Zn, Ag–Pd–Rh and Fe–Cu–Ag ternary alloy systems.

2. The augmented space recursion

The augmented space recursion is based on the augmented space formalism (ASF) [6]. ASF
provides an exact method of obtaining configuration averaged quantities. The configuration
averaging is done by extending the usuallattice spaceH to include the configuration space
8 of the relevant random Hamiltonian parameters. The scheme to get the configuration
averaging of some functionf ({ni}) of a set of random variables{ni} by ASF is described
by theaugmented space theorem:

(i) A random variableni can takeN different valuesni1, . . . , niN , with probabilities
x1, . . . , xN . If the probability densitypi(ni) has finite moments to all orders, it can be
expressed as a continued fraction. Then there exists a self-adjoint operatorM(i) such that its
spectral density ispi(ni). M(i) is an operator in a spaceφ(i) spanned by the configurations
of ni and has a tridiagonal representation with the continued fraction coefficients in the
diagonal and off-diagonal positions.

(ii) For the set of independent random variables{ni} one defines a configuration space
8 =∏⊗ φ(i). A self-adjoint operatorM̃(i) is defined in the configuration space as

M̃(i) = I ⊗ . . .M(i) ⊗ . . . I.
(iii) The configuration average of any functionf ({ni}) of the set of random variables

is given by 〈ν0|f̃ ({M̃(i)})|ν0〉 where |ν0〉 =
∏⊗ |νi0〉 with |νi0〉 =

∑
k

√
xk|nik 〉 where∑

k xk = 1. It represents the reference of average state against which configuration
fluctuations are described.

For electronic structure calculations the quantity of interest is the Green function. The
random variables here are the random occupation numbers at each site of the lattice. These
depend upon the type of component occupying the site. According to the ASF scheme,
based on the Hamiltonian which is a function of random occupation variables defined in a
Hilbert spaceH, one defines a nonrandom HamiltonianH̃ in the extended augmented space
9 = H ⊗ 8, which is the same functional of operators{M̃(i)} asH was of the random
occupation variables{ni}. The effective HamiltonianH̃ contains complete information
about the quantum behaviour of the system described inH and its statistical behaviour
described in8. The configuration averaged Green function is given by the resolvent of
this augmented HamiltoniañH . Note that this statement is exact and no approximations
are involved at this stage.

In a series of recent communications [7–12] we have shown that the most practical
and tractable way of implementing the augmented space formalism is to couple it with
the recursion method. We perform recursion with the effective HamiltonianH̃ defined in
the enlarged augmented space to obtain the configuration averaged Green function. The
starting state of augmented space recursion (ASR) is chosen to be|ξ〉 = |R, L, ν0〉 : R
labels the site in which the projected density of state has to found,L is a composite angular
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momentum index andν0 denotes the average state introduced earlier. The subsequent states
in augmented space are generated by the recursion process

Bn+1|ξn+1〉 = (H̃ − An)|ξn〉 + Bn|ξn−1〉
with

B0 = 1 Bn = 〈ξ |H̃ |ξn+1〉 An = 〈ξn|H̃ |ξn〉.
Recursion is carried out up to a suitable number of steps. The recursion coefficientsAn

andBn form the continued fraction expansion coefficients of averaged Green function〈G〉.
Finally the continued fraction is appended with a terminator to simulate the asymptotic part
and maintain the essential herglotz analytic properties of the Green function.

3. ASR for ternary alloys

We employ the augmented space recursion within the framework of TB-LMTO introduced
by Andersen and Jepsen [9] for a first-principles determination of the configuration averaged
Green function of disordered ternary alloys. We start from the most localized tight-binding
Hamiltonian derived systematically from LMTO-ASA theory and generalized to random
ternary alloys as

H
β

iL,jL′ = (C̃iLδiLδjL′)P iL + (1̃1/2
iL S

β

iL,jL′)1
1/2
jL′ )TiL,jL′

with

C̃iL = CBL + 1
2(C

A
L − CCL )ni + 1

2(C
A
L + CCL − 2CBL )n

2
i

1̃iL = 1B
L + 1

2(1
A
L −1C

L)ni + 1
2(1

A
L +1C

L − 21B
L)n

2
i .

Here i, j denote the lattice sites andL(= `,m) are the orbital indices (` 6 2). CAL ,
CBL , CCL , 1A

L, 1B
L and1C

L are the potential parameters of the constituents A, B and C of the
alloy. The occupation variableni characterizes the ternary random occupation which can
take value 1, 0 or−1 according to whether the site labelled byi is occupied by constituents
A, B or C. The screened or tight-binding structure factorSβ contains all the information
on lattice geometry and it is expressed in terms of conventional structure factorS0 and the
screening parameterβ as

Sβ = S0(1− βSβ).
For a random ternary alloy with constituent concentrationsxA, xB andxC the probability

density of occupation variableni is

p(ni) = xAδ(ni − 1)+ xBδ(ni)+ xCδ(ni + 1) (1)

which can be rewritten as

(−1/π) Im

{
xA

n+i − 1
+ xB

n+i
+ xC

n+i + 1

}
.

According to the ASF scheme, we begin by finding a continued fraction expansion of
the expression in curly brackets to obtain a representation of the self-adjoint matrixM(i).
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As shown in an earlier communication [13] the continued fraction expansion coefficients
are given by

α1 = (xA − xC)

β2
1 = (xA + xC)− (xA − xC)2

α2 = (xA − xC)xB
xA + xC − (xA − xC)2 − xA + xC

β2
2 = xB +

(xA − xC)xB
xA + xC − (xA − xC)2

{
xA − xC − (xA − xC)xB

xA + xC − (xA − xC)2
}

α3 = (xA − xC)xB
−xA − xC + (xA − xC)2

(2)

where

pni = (−1/π) Im
1

n+i − α1− β2
1/[n

+
i − α2− β2

2/(n
+
i − α3)].

The corresponding representation of the operatorM(i) is a 3× 3 matrix. In operator
representation

M(i) =
∑
kk′
0kk′Tkk′

N(i) =
∑
kk′
Skk′Tkk′ .

(3)

N(i) = M(i)M(i). Here Tkk′ is the projection operatorPk if k = k′ or the transfer
operatorTkk′ if k 6= k′ and

0 =


α1 β1 0

β1 α2 β2

0 β2 α3

 (4)

S =


α2

1 + β2
1 + β2

2 β1(α1+ α2) β2(α1+ α3)

β1(α1+ α2) α2
2 + β2

1 β1β2

β2(α1+ α3) β1β2 α2
3 + β2

2

 . (5)

Considering the TB-LMTO Hamiltonian for the random ternary alloy and defining

X1L = XBL
X2L = 1

2(X
A
L −XCL)

X3L = 1
2(X

A
L +XCL − 2xBL )

(whereXL is eitherCL of 11/2
L ), the augmented Hamiltonian defined in the augmented

space is given by

H̃ =
∑
i

ĈiL ⊗ P iL +
∑
ij

1̂
1/2
iL ⊗ SiL,jL′T iL,jL′ ⊗ 1̂1/2

jL (6)

with

X̂iL = X1L +X2LM
(i) +X3LN

(i).
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Defining (1x
L)

1/2SiL,jL′(1
y

L′)
1/2− hxyiL,jL′ with x, y = A, B, C and collecting all terms

together we obtain

H̃ = ĈiLI ⊗ I +
∑
iL,jL′

hBBiLjL′I ⊗ TiL,jL′ +
∑
iL

∑
k 6=k′

EiLkk′T
(i)
kk′ ⊗ PiL+ · · ·

· · · +
∑
iL,jL′

∑
kk′
{(hBAiLjL′0kk′ + hBCiLjL′Skk′)T (i)kk′ ⊗ TiL,jL′ }+ · · ·

· · · +
∑
iL,jL′

∑
kk′
{(hABiLjL′0kk + hCBiLjL′Skk)T (j)kk′ ⊗ TiL,jL′ }+ · · ·

· · · +
∑
iL,jL′

∑
k,k′,k′′,k′′′

M
iL,jL′
k,k′,k′′,k′′′T

(j)

k′k′′ ⊗ T (i)kk′′′ ⊗ TiL,jL′

with

EiLk,k′ = Ĉ2L0k,k′ + Ĉ3LSk,k′

M
iL,jL′
k,k′,k′′,k′′′ = hAAiLjL′0k′,k′′Sk,k′′′ + hACiLjL′0k′k′′Sk,k′′′ + hCAiLjL′0k′,k′′Sk,k′′′ + hCCiLjL′Sk′,k′′Sk,k′′′ .

Once we have identified the augmented space Hamiltonian, the choice of basis states
in Hilbert and configuration spaces is exactly similar to the binary case [7]. The Hilbert
space basis vector is represented a column vectorCm with zeros everywhere except at the
mth position. The inner product is defined as

〈m| � |n〉 = C†mCn.
In order to represent a basis vector in configuration space we allocate for each site two

bits instead of a single bit as in the binary case [7]. The combination of two bits can take
values 00, 10 and 11 representing the three possible configurations at the site. The inner
product between the basis vectors in configuration space is defined as

〈C ′1, C ′2, · · · , C ′i , · · · | � |C1, C2, · · · , Ci〉 = δ{Ci, C ′i}.
Ci and C ′i represent combinations of two bits at theith site for two different

configurations.
Choosing the starting state of the recursion method as

|ξ1〉 = |Ri, L〉 ⊗ |80〉
where

|90〉 = |C0
1, C

0
2, · · · , C0

i , · · ·〉
with C0

i indicating the configuration{00} at the sitei, the subsequent states are then
generated in the process of recursion as mentioned in section 2.

4. Computational details

For calculating the component projected average density of states for A, B and C components
of disordered ternary alloys we have used the augmented space map generated from a real
space cluster of 400 atoms and determined eight pairs of recursion coefficients terminated
by the herglotz termination scheme of Lucini and Nex [15].

As already mentioned, the basic philosophy of the configuration averaging procedure
in augmented space formalism is to expand the Hilbert space to include a disorder space
in which configuration fluctuations are described. Hence for a system withN sites and
m possible realizations of the random variable the augmented space involvedNmN basis
functions. The standard method for implementing this on a computer would require handling
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an impossibility large(NmN)×(NmN)matrix. Working with this large (even though sparse)
Hamiltonian within the recursion method becomes a difficult task for real alloy systems with
s–p–d orbitals.

Two major advancements were proposed in this direction.
Firstly, the conceptual advantages in the augmented space formalism include, apart from

analyticity, translational and rotational invariance automatically built into the augmented
space Hamiltonian†. This allows us to invoke the idea of utilizing symmetry operations
present in the full augmented space in the context of recursion, thus actually working in an
invariant subspace of much reduced rank.

The philosophy of utilizing symmetry in the recursion method operationally is as follows.
Basis vectors, defined iteratively in the recursion procedure, carry information on a more

and more distant environment of the starting state|ξ0〉. The vectorH |ξ0〉 is the combination
of states with which|ξ0〉 interact and the relative contribution of a state|ξn〉 in H |ξ0〉 is
proportional to the strength of interaction between|ξn〉 and |ξ0〉. The orbitals sitting at
sites which are connected by point group symmetry operations to each other have identical
coupling to|ξ0〉. If T is a unitary representation of a symmetry operation, then the states
generated by unitary transformationsT |ξn〉 carry the same information as|ξn〉. Hence, it is
useful to consider among the states coupled to|ξ0〉 only those belonging to the irreducible
part of the full Hilbert space and redefine the Hamiltonian operation so as to reduce the
computer storage and time [16].

As discussed earlier a general basis in augmented space is the direct product of the
lattice space basis vector and the configuration space basis vector.

|ξ〉 = |R〉 ⊗ |{σ1, σ2, · · · σr}〉.
The configuration space basis vector is uniquely specified by the set of points{σi} at

which there areexcitationsand by the type of excitation. By excitations we mean the states
describing fluctuations about the average state|ν0〉. According to our convention, for the
binary case there can be only one type of excitation, characterized by 1, while for the ternary
case there are two different types of excitation, characterized by 1 and−1. The augmented
space Hamiltonian commutes with all the symmetry operations of the Hilbert space.

The transformation of basis orbitals under the point group symmetry operation is given
by

T {|R〉 ⊗ {σ1, σ2, · · · σr}〉} = T |R〉 ⊗ |{T σ1, T σ2, · · · T σr}〉 = |R′〉 ⊗ |{σ ′}〉.
Thus the equivalent states corresponding to|ξ〉 are obtained by applying symmetry

operations independently both to the lattice space and configuration space and picking up
only the distinct states.

The redefined Hamiltonian operation with only inequivalent states is given by

〈ξI |H̃ |ξJ 〉mod = 〈ξI |H̃ |ξJ 〉
√
WI/WJ (7)

whereWI andWJ are the number of distinct states connected by symmetry operations to
|ξI 〉 and |ξJ 〉.

The equation (2) is valid for orbitals having spherical symmetry only. Introduction
of orbitals without spherical symmetry introduces another factor ofβξI (L,L

′) determining
where the stateξI is a symmetric state with respect to orbitalsL andL′. The effective
irreducible basis, which is a linear combination of the old basis sets, reflects the symmetry

† Although the states in the Hilbert spaceH have neither translational nor local lattice group symmetries, because
the disorder is homogeneous and isotropic in the bulk, it is easy to see that these symmetries are restored in the
full augmented space.
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of the orbital itself and it is the symmetry of the orbitals which prohibits the overlap at
a particular site. We call these positions symmetry positions with respect to overlapping
orbitals. A given site in augmented space is a symmetric site with respect to the orbitalsL

andL′ if the real space siteR and the sites{σi} at which there are excitations satisfy the
condition of being symmetric with respect to orbitalsL andL′.

We have already applied the symmetry reduction scheme for disordered binary alloys
[7]. We now apply it to ternary alloys. The only difference between the application of
symmetry reduction in binary and ternary alloys is that, in contrast to binary alloys, for
ternary alloys one has to distinguish between two different types of excitation (namely 1
and−1) and the symmetry operations connect only the states having same type of excitation.

The second point leading to memory reduction and time saving for augmented space
recursion is the use of the multi-spin coding technique. Since we store the basis vectors
in configuration space in bits, one can utilize the bit manipulation techniques and logical
functions predefined in the computer. To make use of the bit manipulation technique for
ternary alloys we proceed as follows. As already mentioned we allocate two bits to describe
the configuration state of each site. For the possible combinations (00) denotes the reference
state 0 (site occupied by the average state), (10) denotes the configuration state 1 while (11)
denotes the configuration state−1. In anM-bit machine, eachM-bit word can represent
up to (M − 1) terms as a sequence of 0s and 1s. To store a configuration of a ternary alloy
with N lattice points the number of words required are 2N/(M − 1) (as we need two bits
to define the configuration of a given lattice point). We define two sets of words denoted
by {B1} and{B2}. Each word is characterized by the number of non-zeros (thecardinality:
C) and the positions where these occur (thecardinality sequence: {SC}). The configuration
corresponding to theith site is stored in themth position of thenth B1 andB2 types of
word.

Let L1 andL2 be the bit types 0 or 1 at themth position of thenth B1 andB2 words
respectively i.e.

L1 = φB(m)B1[C, {SC}]
and

L2 = φB(m)B2[C, {SC}]
whereφB is the logical function IBITS that returns the bit type at a particular position of a
word. Then the configuration at theith site is given byL = L1− 2L2

for L1 = 0 L2 = 0⇒ L = 0

for L1 = 1 L2 = 0⇒ L = 1

for L1 = 0 L2 = 1⇒ L = −1

we exclude the caseL1 = 0 andL2 = 1.
The Hamiltonian operation in configuration space which is essentially changing the

configuration states from 0 to 1 or−1, 1 to 0 or−1 and−1 to 0 or 1 can then be written
in compact form as the following two sets of operations:

Set 1:

B ′1[C ′, {SC ′ }] = (1− L1)φS(m)B1[C, {SC}] + L1φC(m)B1[C, {SC}]
B ′2[C ′, {SC ′ }] = (1− L2)φS(m)B2[C, {SC}] + L2φC(m)B2[C, {SC}]

{0→ 1; 1→ 0;−1→ 0}.
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Set 2:

B ′1[C ′, {SC ′ }] = (1− L1)φS(m)B1[C, {SC}] + L1φC(m)B1[C, {SC}]
B ′2[C ′, {SC ′ }] = (1− L2)φS(m)B2[C, {SC}] + L2φC(m)B1[C, {SC}]

{0→−1; 1→−1;−1→ 1}.
The φS andφC are the logical functions IBSET and IBCLR (predefined in Fortran) which
correspond to operations of setting bit type equal to 1 and 0 respectively.

5. Results and discussion

We have applied the augmented space recursion within the framework of TB-LMTO for
disordered ternary alloys Cu–Ni–Zn and Ag–Pd–Rh. In both these alloys the constituents
are from the same row of the periodic table and are neighbours. This results in very
little charge transfer effect between the constituents. We take into account the effect of
charge transfer by taking advantage of the flexibility of Wigner–Seitz radii in TB-LMTO,
a fact discussed in great detail elsewhere [17]. Furthermore, any theory on ternary alloys
should correctly reduce to the corresponding binary alloy limit for the concentration of one
component tending to zero. Some of the binary subsystems of the ternary systems Cu–Ni–
Zn and Ag–Pd–Rh have been studied previously with the TB-LMTO-ASR method (Cu–Zn
[18], Cu–Ni [14], Ag–Pd [7], Pd–Rh [19]). In figures 1 and 2 we present the density of
states for Cu–Ni–Zn alloys and Ag–Pd–Rh alloys for the 40–30–30 concentrations. In both
cases we observe the effect of dominant diagonal disorder effect and split bands.

Figure 1. The local density of states in states Ryd−1/atom on Cu (dotted), Ni (dash–dotted) and
Zn (long-dashed) sites for Cu40Ni30Zn30 alloys. Energy is measured from the Fermi energy in
Rydbergs.

As a special case for comparison of our approach with both the earlier theoretical CPA,
as well as experimental results, we consider the case of the ternary system Fe–Cu–Ag.
These compounds are artificially prepared and do not exist in the equilibrium solid state.
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Figure 2. The local density of states in states Ryd−1/(atom spin) on Ag (dotted), Pd (dash–
dotted) and Rh (long-dashed) sites for Ag40Pd30Rh30 alloys. Energy is measured from the Fermi
energy in Rydbergs.

Figure 3. The local densities of states in states Ryd−1/atom on Ag (dotted), Cu (dashed) and
Fe (dash–dotted) sites for (bottom) Fe44Cu46Ag10 and (top) Fe38Cu09Ag53.

They are metastable and homogeneous and are produced by sputtering techniques over a
large composition range [20–22]. In particular, two alloys Fe38Cu09Ag53 and Fe44Cu46Ag10

are formed in the fcc phase [22]. Kudrnovský et al have studied the density of states and
XPS spectra of these alloys sing the ternary generalization of the TB-LMTO-CPA [3]. This
is an ideal result against which to compare our TB-LMTO-ASR, since both methods have
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(a)

(b)

Figure 4. XPS spectra for the (a) Cu-rich and (b) Ag-rich alloys. Both spectra have been
normalized to a common maximum intensity of 1 to facilitate comparison.

the TB-LMTO as their basis and thus the associated approximations and errors, in the basis
at least, are similar. Ḧufner et al [5] noted that for Cu-rich CuNi and Ag-rich PdAg alloys
the CPA does not work well in the minority bands. This was noted and emphasized in
many earlier works (see references in [7]). The energy separations between the Cu 3d, or
Ag 4d, and the Fe 3d bands are in fact larger than separations in CuNi and PdAg. It should
be interesting to go beyond the CPA. This point has been noted by Ushidaet al [22]. The
generalization of our TB-LMTO-ASR which is based on the LDA to include the effects of
magnetic constituents is straightforward, with the LSDA replacing the LDA. As a starting
point of our LSDA iterations in the ASR, we have first run the self-consistent CPA codes,
choosing the variable atomic spheres around the three constituents in such a way that the
volume is conserved, each sphere is almost neutral and the sphere overlap is less than 15%.
This procedure was suggested earlier by Drchalet al [23] in order to avoid the controversies
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related to the definition of the Madelung energy in random alloys. It must be noted that the
method is ingenious, but there is noa priori guarantee that we will manage to find such
a triplet of sphere radii satisfying all three conditions mentioned above. With this input, a
few ASR self-consistently iterations lead to convergence.

Figure 3 shows the partial densities of states of the two alloy systems on Fe, Ag and Cu
atoms. The results agree in detail wit the corresponding results in the CPA work [3]. Minor
differences are noticeable in the Ag and Fe partial densities. The structures are similar but
relative weights for Ag in the Ag-rich alloy and Fe in both alloys are slightly different.

The XPS photocurrent is given by

I (E + ω) =
∑
Q

∑
L

∑
σ

xQM
Q
Lσ (E + ω)nQLσ2(EF − E).

Here,Q = Ag, Cu or Fe;ω is the incident photon energy (for the Kα line of Al this
is 109.3 Ryd (1486.6 eV).MQ

Lσ (E + ω) are the photoionization cross-sections for the
constituents. These are dominated by the d contributions and we approximate these as
in the CPA work by their atomic counterpartsMQ

d (ω). Given the incident photon energy,
we may locate these values in spectroscopic tables [23, 4]:

MFe
d : MCu

d : MAg

d = 1 : 5
2 : 9

2.

Finally, as in the earlier work, we broaden the spectra with a Lorenzian of half-width
0.03 Ryd.

Figure 4 shows the XPS spectra, which agree excellently with the CPA as well as with
experiment. Table 1 clarifies this agreement. Perhaps the ASR does fractionally better, but
given the approximations in both the theory and experiment, perhaps one cannot make a
strong statement.

Table 1. Comparison between experimental data, TB-LMTO-CPA and TB-LMTO-ASR on XPS
spectra on FeCuAg alloys. Energies are measured in eV from the Fermi energy.

Peak
(numbered from left) Expt TB-LMTO-CPA TB-LMTO-ASR

I −6.0 −6.25 −6.0
II −3.0 −3.4 −2.9
III −0.5 −0.62 −0.62
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